Application note 009

Further guide to calculate programmed sums, demonstrated with the Euler-Mascheroni and the C47 Σ_n function. This is based a contribution made by C47 enthusiast Jozef Ongena, and written up by Jaco and illustrates the remarkable fast converging series for the Euler-Mascheroni constant:

This is a modification of the original Euler-Mascheroni formula by Brent:

$$\gamma = \lim_{n \to \infty} \frac{\sum_{k=0}^{\infty} (n^{k}/k!)^{p} (H_{k} - \ln(n))}{\sum_{k=0}^{\infty} (n^{k}/k!)^{p}}. \quad H_{n} = \sum_{k=1}^{n} \frac{1}{k}$$

Euler-Mascheroni (Brent et al) (Eqn. 17)

Harmonic number.

Jozef: "The advantage of the series by Brent is that the original definition of the Euler-Mascheroni constant ($\lim_{n\to\infty} (H_n - \ln(n))$) is very slowly converging. This (Brent) series is very fast. Only 100 terms have to be taken to get ~25 precise numbers! And it takes a minute or so connected to the power with the C47!

For n in the formula, we took 30, this should allow a precision of more than 30 digits."

Breaking down Brent's formula in its numerator & denominator, as well as the Harmonic Number generator and the main program which sequences the finite sums:

```
C47 Program file export: Export
format version 2, C47 program
version 1.
0000: { Prgm #47: 65 bytes / 15 steps }
0001: LBL 'EulerM'
0002:
       1
0003:
       100
0004:
       1
       SUMn 'denom'
0005:
0006:
       STO 01
0007:
       1
0008:
       100
0009:
0010:
       SUMn 'numer'
0011:
       STO 02
       RCL 01
0012:
0013:
       1/X
0014:
0015: .END.
```

```
C47 Program file export: Export format
version 2, C47 program version 1.
0000: { Prgm #45: 28 bytes / 11 steps }
0001: LBL 'numer'
0002:
0003:
        RCL T
0004:
        Y^X
0005:
        RCL T
0006:
       X!
0007:
0008:
       2
0009:
       Y^X
0010: RTN
0011: END
```

```
C47 Program file export: Export format version 2, C47 program version 1.

0000: { Prgm #44: 12 bytes / 4 steps }

0001: LBL 'HarmN'

0002: 1/X

0003: RTN

0004: END
```

```
C47 Program file export: Export format
version 2, C47 program version 1.
0000: { Prgm #46: 59 bytes / 21 steps }
0001: LBL 'denom'
0002:
        30
0003:
        RCL T
0004:
        Y^X
0005:
        RCL T
0006:
        X!
0007:
0008:
0009:
        Y^X
0010:
        ST0 11
0011:
0012:
        RCL T
0013:
        SUMn 'HarmN'
0014:
0015:
        30
0016:
        LN
0017:
0018:
        RCL 11
0019:
0020: RTN
0021: END
```

Main program

numerator & Harmonic number calc denominator

2024-0	02-04	Ŀ° /6	i4× 6	54:2	S L	
					100.	
					100.	
	0.5	577 2	15 66	64 901	1 533	
c.eul.masc = 0.577 215 664 902						
PGMSLV	SLVC	f"(x)	i∏n	iΣn	PGMINT	
SOLVE	SLVQ	f'(x)	Пп	Σ_n	∫fdx	

Y: Result of the above programmed series

X: Built-in constant γ_{EM}

Subtracting the built-in Euler-Mascheroni constant, the resulting accuracy for p = 2 is shown to be 6.749849059 x 10^{-25} . Raising the arbitrarily chosen p from 2 to 4 (line 8 of [denom] and [numer]) increases the accuracy to 1 x 10^{-34} , see the table below.

р	Terms	Proximity to the Euler Constant
2	30	6.749849059 × 10 ⁻²⁵
4	30	-1×10^{-34}

Source for the example: MATHEMATICS OF COMPUTATION, VOLUME 34, NUMBER 149, JANUARY 1980, PAGES 305-312, Some New Algorithms for High-Precision Computation of Euler's Constant, <u>link</u>

Author Jaco Mostert & Jozef Ongena

Copyright (C) 2024 The C47 Development Team. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license can be downloaded from gnu.org.